Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Submesoscale coherent vortices (SCVs) are long‐lived subsurface‐intensified eddies that advect heat, salt, and biogeochemical tracers throughout the ocean. Previous observations indicate that SCVs are abundant in the Arctic because sea ice suppresses surface‐intensified mesoscale structures. Regional observational and modeling studies have indicated that SCVs may be similarly prevalent beneath Antarctic sea ice, but there has been no previous systematic attempt to observe these eddies. This study presents the discovery of eddies in the Southern Ocean's seasonally sea ice‐covered region using the Marine Mammals Exploring the Oceans Pole to Pole (MEOP) hydrographic measurements. Eddies are identified via a novel algorithm that utilizes anomalies in spice, isopycnal separation, and dynamic height along MEOP seal tracks. This algorithm is tested and calibrated by simulating the MEOP seal tracks using output from a 1/48 global ocean/sea ice model, in which subsurface eddies are independently identified via the Okubo–Weiss parameter. Approximately 60 detections of cyclonic and over 100 detections of anticyclonic SCVs are identified, with typical dynamic height anomalies of , core depths of , and vertical half‐widths of , similar to their Arctic counterparts. The eddies exhibit a pronounced geographical asymmetry: cyclones are exclusively observed in the open ocean, while 90% of the anticyclones are located on the continental shelf, consistent with injection of low‐potential vorticity waters by surface buoyancy loss. These findings provide a first observational characterization of eddies in the seasonally ice‐covered Southern Ocean, which will serve as a basis for future investigation of their role in near‐Antarctic circulation and tracer transport.more » « less
-
Abstract Buoyancy fluxes and submarine melt rates at vertical ice‐ocean interfaces are commonly parameterized using theories derived for unbounded free plumes. A Large Eddy Simulation is used to analyze the disparate dynamics of free plumes and wall‐bounded plumes; the distinctions between the two are supported by recent theoretical and experimental results. Modifications to parameterizations consistent with these simulations are tested and compared to results from numerical and laboratory experiments of meltwater plumes. These modifications include 50% weaker entrainment and a distinct plume‐driven friction velocity in the shear boundary layer up to 8 times greater than the externally‐driven friction velocity. Using these updated plume parameter modifications leads to 40 times the ambient melt rate predicted by commonly used parameterizations at vertical glacier faces, which is consistent with observed melt rates at LeConte Glacier, Alaska.more » « less
-
Abstract Fjord circulation modulates the connection between marine‐terminating glaciers and the ocean currents offshore. These fjords exhibit both overturning and horizontal recirculations, which are driven by water mass transformation at the head of the fjord via subglacial discharge plumes and distributed meltwater plumes. However, little is known about how various fjord characteristics influence the interaction between 3D fjord circulation and glacial melt. In this study, high‐resolution numerical simulations of idealized glacial fjords demonstrate that recirculation strength controls melt, which feeds back on overturning and recirculation. The relationships between overturning, recirculation, and melt rate are well predicted by vorticity balance, reduced‐order melt parameterizations, and empirical scaling arguments. These theories allow us to take into account the near‐glacier horizontal velocities, which yield improved predictions of fjord overturning, recirculation, and glacial melt.more » « less
-
Abstract Interaction between the atmosphere and ocean in sea ice–covered regions is largely concentrated in leads, which are long, narrow openings between sea ice floes. Refreezing and brine rejection in these leads inject salt that plays a key role in maintaining the polar halocline. The injected salt forms dense plumes that subsequently become baroclinically unstable, producing submesoscale eddies that facilitate horizontal spreading of the salt anomalies. However, it remains unclear which properties of the stratification and leads most strongly influence the vertical and horizontal spreading of lead-input salt anomalies. In this study, the spread of lead-injected buoyancy anomalies by mixed layer and eddy processes are investigated using a suite of idealized numerical simulations. The simulations are complemented by dynamical theories that predict the plume convection depth, horizontal eddy transfer coefficient, and eddy kinetic energy as functions of the ambient stratification and lead properties. It is shown that vertical penetration of buoyancy anomalies is accurately predicted by a mixed layer temperature and salinity budget until the onset of baroclinic instability (~3 days). Subsequently, these buoyancy anomalies are spread horizontally by eddies. The horizontal eddy diffusivity is accurately predicted by a mixing-length scaling, with a velocity scale set by the potential energy released by the sinking salt plume and a length scale set by the deformation radius of the ambient stratification. These findings indicate that the intermittent opening of leads can efficiently populate the polar halocline with submesoscale coherent vortices with diameters of ~10 km, and they provide a step toward parameterizing their effect on the horizontal redistribution of salinity anomalies.more » « less
An official website of the United States government
